International ICR Rectifier

SELF-OSCILLATING FULL-BRIDGE DRIVER IC

Internal bootstrap FETs

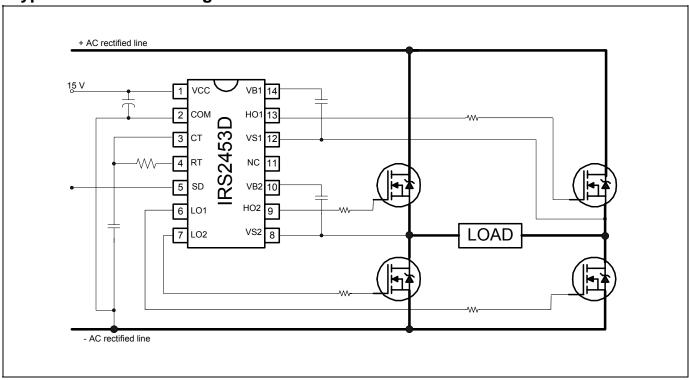
Features

- Integrated 600 V full-bridge gate driver
- CT, RT programmable oscillator
- 15.6V Zener clamp on V_{CC}
- Micropower startup
- Logic level latched shutdown pin
- Non-latched shutdown on CT pin (1/6th V_{CC})
- ESD protection on all pins 14-lead SOIC or PDIP package

1.0 µs (typ.) internal deadtime

Excellent latch immunity on all inputs & outputs

Description


The IRS2453D is based on the popular IR2153 self-oscillating half-bridge gate driver IC, and incorporates a high voltage fullbridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The output driver features a high pulse current buffer stage designed for minimum driver cross-conduction. Noise immunity is achieved with low di/dt peak of the gate drivers, and with a undervoltage lockout hysteresis greater than 1.5 V. The IRS2453D also includes latched and non-latched shutdown pins.

Packages

14 Lead PDIP IRS2453DPbF

14 Lead SOIC (Narrow Body) IRS2453DSPbF

Typical Connection Diagram

International **ICR** Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

	Parameter			
Symbol	Definition	Min.	Max.	Units
$V_{B1,}V_{B2}$	High side floating supply voltage	-0.3	625	
$V_{S1,}V_{S2}$	High side floating supply offset voltage	V _B - 25	V _B + 0.3	
$V_{\text{HO1}}, V_{\text{HO2}}$	High side floating output voltage	V _S - 0.3	V _B + 0.3	
$V_{\text{lo1}}, V_{\text{lo2}}$	Low side output voltage	-0.3	V _{CC} + 0.3	V
V _{RT}	R _T pin voltage	-0.3	V _{CC} + 0.3	
V _{CT}	C _T pin voltage	-0.3	V _{CC} + 0.3	
V_{SD}	SD pin voltage	-0.3	V _{CC} + 0.3	
I _{RT}	R _T pin current	-5	5	m۸
Icc	Supply current (Note 1)		25	mA
dV _S /dt	Allowable offset voltage slew rate	-50	50	V/ns
PD	Maximum power dissipation @ $T_A \le +25 \text{ °C}$, 8-Pin DIP		1.0	
PD	Maximum power dissipation @ $T_A \le +25 \text{ °C}$, 8-Pin SOIC		0.625	W
$R_{ heta JA}$	Thermal resistance, junction to ambient, 8-Pin DIP		125	
$R_{ heta JA}$	Thermal resistance, junction to ambient, 8-Pin SOIC		200	°C/W
TJ	Junction temperature	-55	150	
Ts	Storage temperature	-55	150	°C
ΤL	Lead temperature (soldering, 10 seconds)		300	

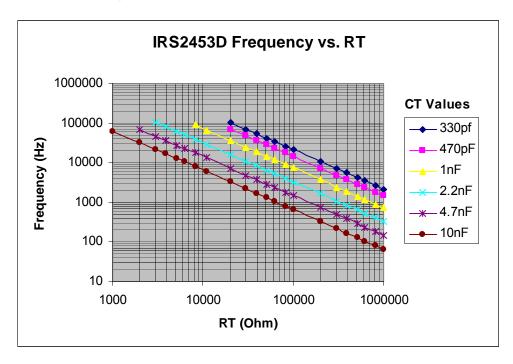
Note 1: This IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6 V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics section.

International **IOR** Rectifier

IRS2453DPbF

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.


	Parameter			
Symbol	Definition	Min.	Max.	Units
V _{BS1} , V _{BS2}	High side floating supply voltage	V _{CC} - 0.7	V _{CLAMP}	
V_{S1}, V_{S2}	Steady state high side floating supply offset voltage	-3.0 (Note 2)	600	V
V _{CC}	Supply voltage	V _{CCUV+}	V _{CLAMP}	
lcc	Supply current	(Note 3)	5	mA
TJ	Junction temperature	-25	125	°C

- Note 2: Care should be taken to avoid output switching conditions where the V_S node flies inductively below ground by more than 5 V.
- **Note 3:** Enough current should be supplied to the V_{CC} pin of the IC to keep the internal 15.6 V zener diode clamping the voltage at this pin.

Recommended Component Values

	Parameter			
Symbol	Component	Min.	Max.	Units
RT	Timing resistor value	1		kΩ
Ст	C _T pin capacitor value	330		pF

VBIAS (VCC, VBS) = 14 V, VS=0 V and TA = 25 °C, CLO1=CLO2 = CHO1=CHO2 = 1 nF.

International **IOR** Rectifier

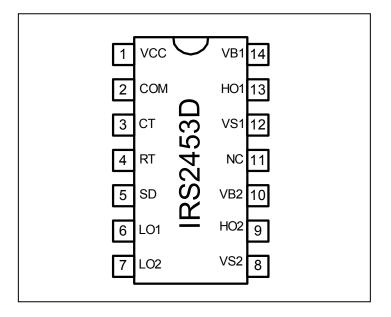
Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 14 V, C_T = 1 nF and T_A = 25 °C unless otherwise specified. The V_0 and I_0 parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO1=CLO2=CHO1=CHO2=1 nF.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Low Volt	age Supply Characteristics					
V _{CCUV+}	Rising V _{CC} undervoltage lockout threshold	10.0	11.0	12.0		
V _{CCUV} -	Falling V _{CC} undervoltage lockout threshold	8.0	9.0	10.0	V	
V _{CCUVHYS}	V _{CC} undervoltage lockout hysteresis	1.5	2.0	2.4		
Ιαςςυν	Micropower startup V _{CC} supply current		140	200	μA	$V_{CC} \leq V_{CCUV}$
lacc	Quiescent V _{CC} supply current		1.3	2.0	~^^	
I _{CC_20К}	V_{CC} supply current at f_{osc} (R_T = 36.5 k Ω)		3.0	3.5	mA	
I _{CCFLT}	V_{CC} supply current when SD > V_{SD}		360	500	μA	
V _{CLAMP}	V _{CC} Zener clamp voltage	14.6	15.6	16.6	V	I _{CC} = 5 mA
Floating	Supply Characteristics					
I _{QBS1UV,} I _{QBS2UV}	Micropower startup V _{BS} supply current		3	10		$\begin{array}{l} V_{CC} \leq V_{CCUV}\text{,} \\ V_{CC} = V_{BS} \end{array}$
I _{QBS1,} I _{QBS2}	Quiescent V _{BS} supply current		30	100	μA	
V _{BS1UV+,} V _{BS2UV+}	V _{BS} supply undervoltage positive going threshold	8.0	9.0	10.0	N	
Vbs1uv-, Vbs2uv-,	V _{BS} supply undervoltage negative going threshold	7.0	8.0	9.0	V	
I _{LK1, ILK2}	Offset supply leakage current			50	μA	V _B = V _S = 600 V
Oscillato	r I/O Characteristics					
		19.6	20.2	20.8		R _T = 36.5 kΩ
fosc	Oscillator frequency	88	94	100	kHz	R _T = 7.15 kΩ
d	R⊤ pin duty cycle	48	50	52	%	f _o < 100 kHz
Ict	C⊤ pin current		0.05	1.0	μA	
ICTUV	UV-mode C _T pin pulldown current	1	5		mA	V _{CC} = 7 V
V _{CT+}	Upper C_T ramp voltage threshold		9.3			
V _{CT-}	Lower C _T ramp voltage threshold		4.7		V	
V			10	50		I _{RT} = 100 μA
V _{RT+}	High level R_T output voltage, V_{CC} - V_{RT}		100	300		I _{RT} = 1 mA
M			10	50	mV	I _{RT} = 100 μA
V _{RT-}	Low level R⊤ output voltage		100	300		I _{RT} = 1 mA
VRTUV	UV-mode R⊤ output voltage		0	100		$V_{CC} \leq V_{CCUV}$

International **IGR** Rectifier

IRS2453DPbF

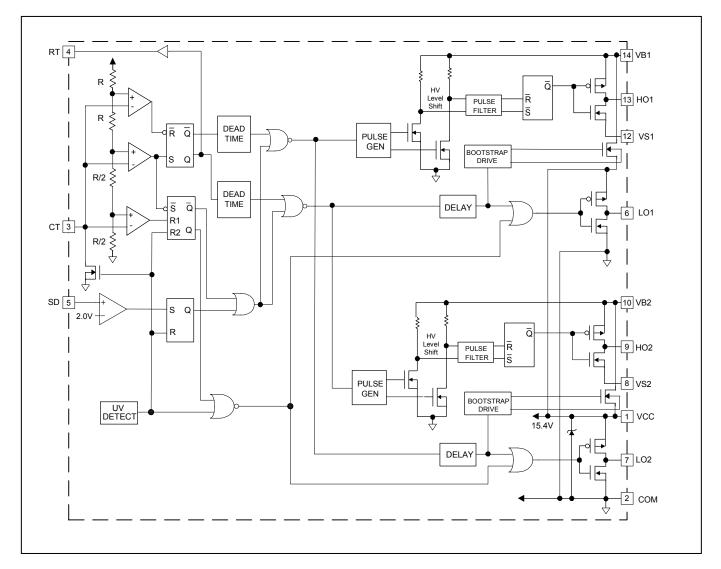

Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 14 V, C_T = 1 nF and T_A = 25 °C unless otherwise specified. The V_0 and I_0 parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO1=CLO2=CHO1=CHO2=1 nF.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions	
Gate Dri	ver Output Characteristics						
V _{OH}	High level output voltage, V _{BIAS} - V _O		V _{CC}				
V _{OL}	Low level output voltage, Vo		COM			V	lo = 0 A
V _{OL_UV}	UV-mode output voltage, V _O		СОМ			$I_{O} = 0 \text{ A},$ $V_{CC} \leq V_{CCUV}$	
tr	Output rise time		120	200			
t _f	Output fall time		50	100	ns		
t _{sd}	Shutdown propagation delay		250				
t _d	Output deadtime (HO or LO)	0.8	1.0	1.40	μs		
I _{O+}	Output source current		180		mA		
I _{O-}	Output sink current		260				
Shutdow	<i>/</i> n						
V _{SD}	Shutdown threshold at SD pin (latched)	1.8	2.0	2.3			
VCTSD	C_T voltage shutdown threshold (non latched)	2.2	2.3	2.5	V		
M	SD mode R_T output voltage, V _{CC} - V _{RT}		10	50		I _{RT} = 100 μA, V _{CT} = 0 V	
V _{RTSD}	SD mode RT output voltage, VCC - VRT		100	300	mV	I _{RT} = 1 mA, V _{CT} = 0 V	
Bootstra	p FET Characteristics						
V _{B1_ON} V _{B2_ON}	V_{B} when the bootstrap FET is on	13.7	14.0		V		
I _{B1_CAP} I _{B2_CAP}	V_{B} source current when FET is on	40	55		mA	С _{вS} =0.1 µF	
Ι _{Β1_10 V} Ι _{Β2_10 V}	V_{B} source current when FET is on	10	12			V _B =10 V	

International

Lead Assignment

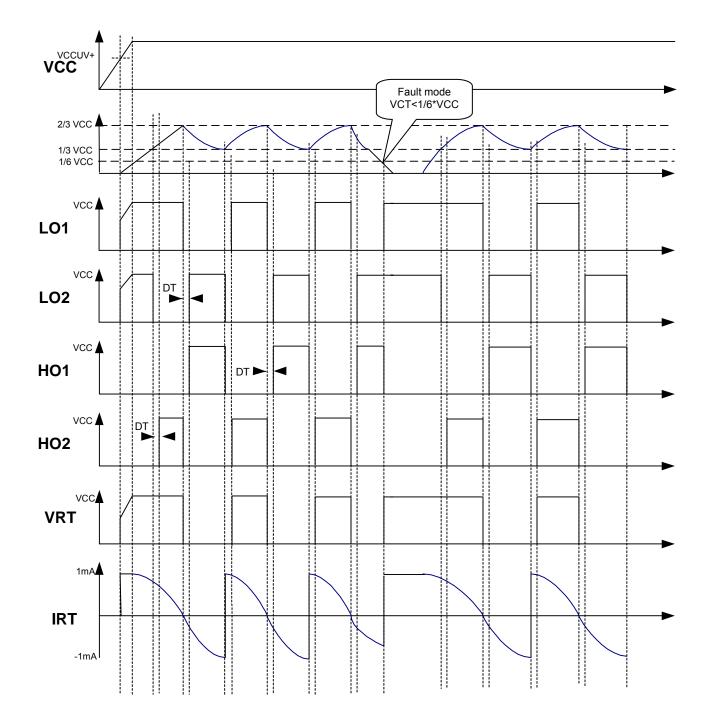

Lead Definitions

	Lead					
Pin	Symbol	Description				
1	VCC	Logic and internal gate drive supply voltage				
2	COM	IC power and signal ground				
3	СТ	Oscillator timing capacitor input				
4	RT	Oscillator timing resistor input				
5	SD	Shutdown input				
6	LO1	Low side gate driver output				
7	LO2	Low side gate driver output				
8	VS2	High voltage floating supply return				
9	HO2	High side gate driver output				
10	VB1	High side gate driver floating supply				
11	NC	No connect				
12	VS1	High voltage floating supply return				
13	HO1	High side gate driver output				
14	VB1	High side gate driver floating supply				

International **tor** Rectifier

IRS2453DPbF

Functional Block Diagram



All values are typical.

International **tor** Rectifier

IRS2453DPbF

Timing Diagram

International

Functional Description

Under-Voltage Lock-Out Mode (UVLO)

The under-voltage lockout mode (UVLO) is defined as the state the IC is in when V_{CC} is below the turn-on threshold of the IC. The IRS2453D under-voltage lock-out is designed to maintain an ultra low supply current of less than 150 μ A, and to guarantee the IC is fully functional before the high and low side output drivers are activated. During under-voltage lock-out mode, the high and low side driver outputs LO1, LO2, HO1, HO2 are all low. With V_{CC} above the V_{CCUV+} threshold, the IC turns on and the output begin to oscillate.

Normal Operating Mode

Once $V_{\rm CC}$ reaches the start-up threshold $V_{\rm CCUV^+},$ the MOSFET M1 opens, RT increases to approximately $V_{\rm CC}$ ($V_{\rm CC}-V_{\rm RT^+}$) and the external CT capacitor starts charging. Once the CT voltage reaches $V_{\rm CT^-}$ (about 1/3 of $V_{\rm CC}$), established by an internal resistor ladder, LO1 and HO2 turn on with a delay equivalent to the deadtime (t_d). Once the CT voltage reaches $V_{\rm CT^+}$ (approximately 2/3 of $V_{\rm CC}$), LO1 and HO2 go low, RT goes down to approximately ground ($V_{\rm RT^-}$), the CT capacitor starts discharging and the deadtime circuit is activated. At the end of the deadtime, LO2 and HO1 go low, RT goes to high again, the deadtime is activated. At the end of the deadtime, LO1 and HO2 go high and the cycle starts over again.

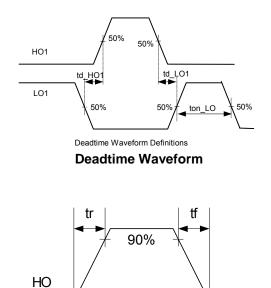
The frequency is best determined by the graph, Frequency vs. RT, page 3, for different values of CT. A first order approximate of the oscillator frequency can also be calculated by the following formula::

$$f \approx \frac{1}{1.453 \times RT \times CT}$$

This equation can vary slightly from actual measurements due to internal comparator over- and under-shoot delays.

Bootstrap MOSFET

The internal bootstrap FET and supply capacitor (C_{BOOT}) comprise the supply voltage for the high side driver circuitry. The internal boostrap FET only turns on when the corresponding LO is high. To guarantee that the high-side supply is charged up before the first pulse on HO1 and HO2, LO1 and LO2 are both on when CT ramps between zero and $1/3^*V_{CC}$. LO1 and LO2 are also on when CT is grounded below $1/6^*V_{CC}$ to ensure that the bootstrap capacitor is charged when CT is brought back over $1/3^*V_{CC}$.

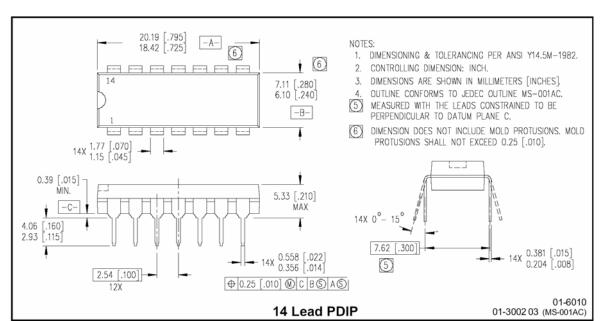

Non-Latched Shutdown

If CT is pulled down below V_{CTSD} (approximately 1/6 of V_{CC}) by an external circuit, CT doesn't charge up and oscillation stops. All outputs are held low and the bootstrap FETs are off. Oscillation will resume once CT is able to charge up again to $V_{\text{CT-}}$

Latched Shutdown

LO

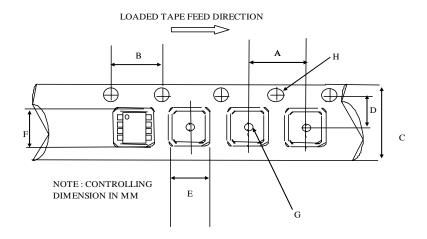
When the SD pin is brought above 2 V, the IC goes into fault mode and all outputs are low. $V_{\rm CC}$ has to be recycled below $V_{\rm CCUV}$ to restart the IC. The SD pin can be used for over-current or over-voltage protection using appropriate external circuitry.



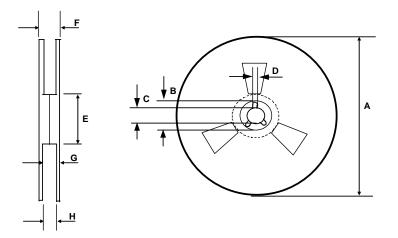
P_____/ 10% ↓____ Rise and Fall Time Waveform

NOTES: 8.74 [.344] 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982. 8.56 [.337] CONTROLLING DIMENSION: MILLIMETER 2 -A-6 3 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4 OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AB. AAAAA A 6.20 [.2440] 5.80 [.2284] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO (5)(6)3.99 [.157] A SUBSTRATE. -B-3.81 [.150] (6)DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD ⊕ 0.25 [.010] @ C B @ PROTUSIONS SHALL NOT EXCEED 0.15 [.006]. 88888 0.48 [.019] X 45° 0.28 .011 0° - 8° 0.25 [.0098] 1.75 [.0688] 1.35 [.0532] 0.10 [.0040] -C-1.27 [.050] 1.27 [.050] 0.46 [.018] 14X 0.41 [.016] 12X 0.25 [.0098] (5)14X 0.36 [.014] 14X ⊕ 0.25 [.010] @ C B S A S 01-6019 01-3063 00 (MS-012AB) 14 Lead SOIC (narrow body)

IRS2453DS

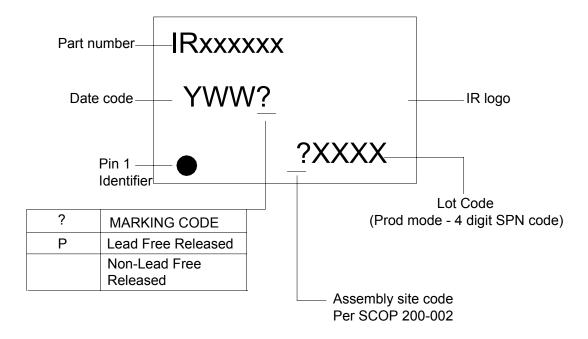


International **IGR** Rectifier


IRS2453DPbF

International **tor** Rectifier

CARRIER TAPE DIMENSION FOR 14SOICN


	Metric		Imperial		
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	15.70	16.30	0.618	0.641	
D	7.40	7.60	0.291	0.299	
E	6.40	6.60	0.252	0.260	
F	9.40	9.60	0.370	0.378	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 14SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
А	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

International **tor** Rectifier

ORDER INFORMATION

14-lead PDIP IRS2453DPbF 14-lead SOIC IRS2453DSPbF 14-lead SOIC tape & reel IRS2453DSTRPbF

International TOP Rectifier The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.iff.com <http://www.iff.com/> IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/26/2006

International **ICR** Rectifier

IRS2453DPbF

REVISION HISTORY

February 20, 2006

		July '05 revision		Feb '06 revision				
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
Supply Chara	acteristics							
V _{CCUV+}	Rising V_{CC} undervoltage lockout threshold	10.0	11.0	12.0	10.0	11.0	12.0	
V _{CCUV} -	Falling V _{CC} undervoltage lockout threshold	7.8	8.8	9.8	8.0	9.0	10.0	v
VCCUVHYS	V _{CC} undervoltage lockout hysteresis	0.5	1.0	1.5	1.6	2.0	2.4	
V _{CLAMP}	V _{CC} Zener clamp voltage	14.9	15.9	16.9	14.6	15.6	16.6	
Oscillato	pr I/O Characteristics							
£	Oscillator frequency (R_T =36.5 k Ω)	18.6	19.2	19.8	19.6	20.2	20.8	
fosc	Oscillator frequency (R_T =7.15 k Ω)	85	91	97	89	95	101	kHz
V _{CT+}	Upper C_T ramp voltage threshold		9.33			9.1		
V _{CT} -	Lower C_T ramp voltage threshold		4.66			4.8		V
tr	Output rise time		100	150		120	220	ns
I _{O+}	Output source current		200			180		
I _{O-}	Output sink current		400			260		mA
Bootstra	Bootstrap FET Characteristics							
V _{B1_ON} V _{B2_ON}	V_B when the bootstrap FET is on		14			13.7		V
I _{B1_CAP} I _{B2_CAP}	V_B source current when FET is on		50		30	55		
Ι _{B1_10 V} Ι _{B2_10 V}	V_{B} source current when FET is on		10		8	12		mA

International **tor** Rectifier

June 30, 2006

		June '06 revision		Feb '06 revision				
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
Supply (Characteristics							
VCCUVHYS	V _{CC} undervoltage lockout hysteresis	1.5	2.0	2.4	1.6	2.0	2.4	V
I _{CC_20К}	V_{CC} supply current at f_{OSC} (R_T = 36.5 k Ω)		3.0	3.5	No	t specif	ied	mA
I _{CCFLT}	V_{CC} supply current when SD>V _{SD}		360	500	No	t specif	ied	
I _{QBS1,} I _{QBS2}	Quiescent V _{BS} supply current		30	100		60	100	μA
Oscillato	pr I/O Characteristics							
f _{OSC}	Oscillator frequency (R_T =7.15 k Ω)	88	94	100	89	95	101	kHz
V_{CT+}	Upper C_T ramp voltage threshold		9.3			9.1		
V _{CT-}	Lower C⊤ ramp voltage threshold		4.7			4.8		V
t _r	Output rise time		120	200		120	220	ns
Gate Dri	ver Output Characteristics							
\mathbf{t}_{d}	Output deadtime (HO or LO)	0.8	1.0	1.40	0.75	1.0	1.50	
t _{sd}	Shutdown propagation delay		250			275		μs
Shutdov	vn Characteristics							
V_{SD}	Shutdown threshold at SD pin (latched)	1.8	2.0	2.3		2.0		v
V _{CTSD}	C_{T} voltage shutdown threshold (non latched)	2.2	2.3	2.5		2.3		v
Bootstra	ap FET Characteristics							
V _{B1_ON} V _{B2_ON}	V_B when the bootstrap FET is on	13.7	14.0			13.7		V
I _{B1_CAP} I _{B2_CAP}	V_{B} source current when FET is on	40	55		30	55		mA
Ι _{Β1_10 V} Ι _{Β2_10 V}	V_B source current when FET is on	10	12		8	12		mA